Stochastic quantum integrable systems, part II
Ivan Corwin, Columbia University, Clay Mathematics Institute, Institute Henri Poincare, Packard Foundation

We will describe the rich interplay between quantum integrable systems and stochastic interacting particle systems. Subjects covered will include Bethe ansatz, vertex models, exclusion processes and Kardar-Parisi-Zhang universality.

In part I we will describe how to compute a Fredholm determinant formula for the one-point distribution of q-TASEP via a Markov duality and the Plancherel theory of associated Bethe ansatz eigenfunctions.

In part II, we will explain how integrable vertex models along with the fusion procedure give rise to stochastic particle systems which seem to generalize all known integrable KPZ class models.

Though parts I and II are related, each will be self-contained and no previous knowledge is needed to attend either.